MIT Open Course

De matemáticas tienen los siguientes cursos

De ellos solamente unos pocos los tienen con videos

 
Sample video lectures
18.01 Single Variable Calculus Fall 2006
NEW
Complete video lectures
18.02 Multivariable Calculus Fall 2007
 
Complete video lectures
18.03 Differential Equations Spring 2006
 
Complete video lecturesSpecial features
18.06 Linear Algebra Spring 2005
 
Complete video lectures
18.085 Computational Science and Engineering I Fall 2007
 
Complete video lecturesComplete audio lectures
18.086 Mathematical Methods for Engineers II Spring 2006
 
Complete video lecturesComplete audio lectures
18.410J Introduction to Algorithms (SMA 5503) Fall 2005
 
Sample video lectures
18.01 Single Variable Calculus Fall 2006

 Derivadas, limites y mucha integracion de una variable

Es todo de una variable

NEW
Complete video lectures
18.02 Multivariable Calculus Fall 2007

Empieza por vectores y matrices, ecuaciones parametricas

Derivadas parciales, maximos y minimos, minimos cuadrados, lagrangiana

Integrales Dobles e Integrales Triples

 
Complete video lectures
18.03 Differential Equations Spring 2006

Ecuaciones separables

Metodos numericos

(es decir 1º orden)

Despues de 2º orden

Series de Fourier

Transformada de Laplace

Sistemas de primer orden

 
Complete video lecturesSpecial features
18.06 Linear Algebra Spring 2005

La que he visto con mas detalle es 18.06 Linear Algebra

Introducción:

Tiene 10 objetivos (más ideas de conceptos, que expresado como competencias) de saber hacer.

Los problemas pesan un 15% de la nota final

Luego vario sparciales y un final

Practicas con Matlab.

La tabla de contenidos Table of Contents

1. Introduction to Vectors

1.1 Vectors and Linear Combinations
1.2 Lengths and Dot Products

2. Solving Linear Equations

2.1 Vectors and Linear Equations
2.2 The Idea of Elimination
2.3 Elimination Using Matrices
2.4 Rules for Matrix Operations
2.5 Inverse Matrices
2.6 Elimination = Factorization: A = LU
2.7 Transposes and Permutations

3. Vector Spaces and Subspaces

3.1 Spaces of Vectors
3.2 The Nullspace of A: Solving Ax = 0
3.3 The Rank and the Row Reduced Form
3.4 The Complete Solution to Ax = b
3.5 Independence, Basis, and Dimension
3.6 Dimensions of the Four Subspaces

4. Orthogonality

4.1 Orthogonality of the Four Subspaces
4.2 Projections
4.3 Least Squares Approximations
4.4 Orthogonal Bases and Gram-Schmidt

5. Determinants

5.1 The Properties of Determinants
5.2 Permutations and Cofactors
5.3 Cramer’s Rule, Inverses, and Volumes

6. Eigenvalues and Eigenvectors

6.1 Introduction to Eigenvalues
6.2 Diagonalizing a Matrix
6.3 Applications to Differential Equations
6.4 Symmetric Matrices
6.5 Positive Definite Matrices
6.6 Similar Matrices
6.7 The Singular Value Decomposition (SVD)

7. Linear Transformations

7.1 The Idea of a Linear Transformation
7.2 The Matrix of a Linear Transformation
7.3 Change of Basis
7.4 Diagonalization and the Pseudoinverse

8. Applications

8.1 Matrices in Engineering
8.2 Graphs and Networks
8.3 Markov Matrices and Economic Models
8.4 Linear Programming
8.5 Fourier Series: Linear Algebra for Functions
8.6 Computer Graphics

9. Numerical Linear Algebra

9.1 Gaussian Elimination in Practice
9.2 Norms and Condition Numbers
9.3 Iterative Methods for Linear Algebra

10. Complex Vectors and Complex Matrices

10.1 Complex Numbers
10.2 Hermitian and Unitary Matrices
10.3 The Fast Fourier Transform

 
Complete video lectures
18.085 Computational Science and Engineering I Fall 2007

De todo un poco, muchas aplicaciones concretas

 
Complete video lecturesComplete audio lectures
18.086 Mathematical Methods for Engineers II Spring 2006

Precido al anterior

 
Complete video lecturesComplete audio lectures
18.410J Introduction to Algorithms (SMA 5503) Fall 2005

De algotritmos ?¿?¿

2 respuestas a MIT Open Course

  1. maria dice:

    Esta información resulta atractiva, ya que va más allá de lo que es la asignatura pero dado que estamos en una enseñanza en castellano, se debería almenos traducir todo lo que se escribe, ya que sino muchos no podremos avanzar, tambien tengo presente que a estas alturas muchos deberíasmos tener un nivel optimo de inglés pero como se sabe que no es así si que se debería aplicar esta recomendación.

    En general viendo esta página y todo el contenido, se puede afirmar de que nuestro profesor de matemáticas se preocupa por que crezcamos en todos los ámbitos posibles y esto es de agradecer.

  2. go back dice:

    Though this might look like some sort of peculiar notion,
    as we have displayed in this post, trading during the night will
    be the sole technique you can really take advantage of the robust international markets which have been identified far away like Sydney along with Parts of asia.
    Some sort of phone solution is usually an alternative that
    you simply make investments your hard earned dollars throughout
    since you also feel that the marketplace will go up.
    Inside binary investing, ones profits aren’t based upon the particular value from the transfer by itself, but simply by correctly picking that route you would imagine this market will certainly proceed. If your selection comes about to search the wrong manner, you could potentially get rid of all your expense, including your specialist fees in the event you help make the incorrect 1.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: